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EXECUTIVE SUMMARY 

This report summarizes the results of the second year (January–December, 2020) of a four-year 

(2019–2022) research project to develop methods for unbiased population monitoring for dusky 

grouse (Dendragapus obscurus; previously “blue grouse”) in Montana. The primary objectives 

of this study are to 1) generate a predictive model of habitat suitability for dusky grouse 

throughout their range in Montana, 2) develop and evaluate survey methods that provide 

unbiased statewide and regional estimates of dusky grouse densities and annual trend monitoring 

in Montana, and 3) develop methods that facilitate rigorous and cost-effective evaluations of 

grouse-habitat relationships and the effects of management.  

Based on our empirical estimates of local abundance and detection from spring surveys in 2019, 

we conducted statistical simulations to evaluate the efficacy of potential survey protocols for 

monitoring dusky grouse. Based on discussions in 2018 with MFWP Region 3 personnel, an 

acceptable monitoring program should produce unbiased estimates of abundance and annual 

estimates should have a coefficient of variation (CV) of the estimator of less than 15%. Results 

of our simulations using N-mixture models indicated that 4 replicate surveys at 360 independent 

survey sites yielded unbiased and acceptably precise (< 15% CV) estimates of regional 

abundance when local abundance was at least 0.36 individuals and the average probability of 

detection was 0.28.  

We expanded our pilot study evaluating survey methods for unbiased monitoring of dusky 

grouse populations from Region 3 to include suitable dusky grouse habitat in the western half of 

Montana in Regions 1-5. Based on the results of our simulations, we modified 2020 survey 

methods from those used in 2019. Surveys were still designed so that multiple statistical methods 

(e.g., N-mixture models, distance sampling) could be used to estimate occupancy, local 

abundance, and density of dusky grouse. Survey methods consisted of point-counts with 

electronic playback to increase detections, and walking transect routes. Potential survey transects 

were randomly generated in areas identified to have high relative likelihood of dusky grouse 

occurrence as predicted by the model of relative habitat suitability we developed in 2019. Project 

personnel, volunteers, and MFWP field biologists selected a total of 60 survey transects to 

survey in each region. Survey transects consisted of 6 independent survey points spaced 400 

meters apart along a road or trail. Surveys were only conducted during the spring breeding 

season from April 10 – May 29 when vocalizations of male grouse are greatest. During the 

survey period, a total of 291 transects were surveyed, with 59 transects surveyed in Region 1, 64 

in Region 2, 65 in Region 3, 64 in Region 4, and 36 in Region 5. Of those 291 transects, at least 

2 were only partially surveyed due to equipment failure. In total, 1,744 points occurring along 

the 290 transects were surveyed; 1720 were surveyed 4 times, 16 were surveyed only 2 times, 

and 8 were surveyed only 1  

We used single season N-mixture models to produce preliminary estimates of local abundance 

and probability of detection with the 2020 spring survey data. The probability of detecting a 

dusky grouse was consistent across FWP regions and averaged 0.21 ± 0.03SE (CV = 14%).  

Estimated local abundance varied by FWP region; local abundance varied from 0.12 ± 0.03 (CV 

= 25%) in Region 4 to 0.56 ± 0.13 in Region 2 (CV = 23%).  
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DEVELOPING METHODS OF UNBIASED POPULATION 

 MONITIORING IN MONTANA 

 

2019 Quarter 1 Report 

 

OBJECTIVES 

Objective 1: Generate a predictive model of habitat suitability for dusky grouse throughout 

their range in Montana 

Accomplishments 

We obtained dusky grouse observation data from the Integrated Monitoring in Bird Conservation 

Regions monitoring program (IMBCR) administrated by the Bird Conservancy of the Rockies. 

We previously obtained data from Spring 2009 through Spring 2018 for a total of 20,009 surveys 

conducted over 5,845 sites (Pavlacky et al. 2017, Hanni et al. 2018). In 2020, we updated our 

data with observation data from 2019 and 2020 for additional 3,441 surveys.  

We updated our previous geospatial datasets in order to define annual habitat conditions. We 

downloaded LANDFIRE geospatial data for vegetation type, vegetation canopy cover, 

vegetation height, forest canopy cover, and forest canopy height for 2008, 2010, 2012, 2014, and 

2016. We grouped our IMBCR observation survey data by years and associated each group of 

years with the appropriate land cover dataset. We grouped 2009 data with the 2008 landcover 

data, the 2010 & 2011 data with the 2010 landcover data, the 2012 & 2013 data with the 2012 

landcover data, the 2014 & 2015 data with the 2014 landcover data, and the 2016-2020 data with 

the 2016 land cover data. Within their groups, we reduced the IMBCR point counts to 

detected/not-detected data for dusky grouse, that we then used to represent used (detected) and 

available (not-detected) sites. It is possible for birds to be present but not detected at available 

survey sites. We assumed that all dusky grouse detected at a given point count location were 

located within 250 m of the survey site.  

Using remotely-sensed geospatial datasets, we extracted habitat information within a 250-m 

buffer drawn around each survey site. We used digital elevation models (DEMs) from U.S. 

Geological Survey, ArcGIS 10.3.1 (Environmental Systems Research Institute, Redlands, CA) 

and geospatial modeling environment (GME) to measure average elevation, aspect, and slope of 

the 250 m radii area (Beyer 2015, U.S. Geological Survey 2017). We calculated the average 

distance of the 250 m radii area to the nearest stream and to the nearest road using the spatial 

analyst tools of ArcGIS applied to the Montana Spatial Data Infrastructure (MSDI) 

Transportation Framework and Hydrography datasets downloaded from the Montana state 

library and GME (Beyer 2015, Montana Spatial Data Infrastructure 2017, 2018). We used the 

2008 LANDFIRE, 2010 LANDFIRE, 2012 LANDFIRE, 2014 LANDFIRE, and 2016 

LANDFIRE vegetation datasets with a spatial resolution of 30 × 30 m (LANDFIRE 2012), 

including layers for existing vegetation canopy (EVC), existing vegetation height (EVH), 

existing vegetation type (EVT), forest canopy cover (CC), and forest canopy height (CH). EVC 

is the vertically projected percent cover of the live canopy layer; EVH is the average height of 

the dominant vegetation; EVT is the type of plant community present; CC is the percent cover 

the tree canopy in a stand; CH is only provided for forested areas and is the average height of the 

top of a vegetated canopy (LANDFIRE 2012). We used GME to calculate the proportion of 



vegetation cover within 250 meters of the survey location (Beyer 2015). From these layers we 

extracted geospatial habitat information for a total of 167 variables that were then used to build 

resource selection functions (RSF). 

We are in the process of evaluating habitat use with resource selection functions that are 

calibrated using general linear mixed models with a logistic link function and binomial error 

distribution using the lme4 package in program R (Bates et al. 2015, R Core Team 2017). 

Goals for Next Quarter 

Next quarter, we will finish evaluating habitat use with resource selection functions. In addition, 

we will expand the habitat modeling to include machine learning approaches like Random 

Forest. We will use an ensemble approach to estimate model-averaged predictions of habitat 

suitability and calculate available habitat of dusky grouse by region in Montana. We will draft 

and submit a manuscript for publication in a peer-reviewed journal.  

Objective 2: Develop and evaluate unbiased survey methods that provide statewide and 

regional estimates of dusky grouse densities and annual trend monitoring in Montana 

Accomplishments 

Methods 

Simulations 

To evaluate survey effort required to achieve useful annual estimates of dusky grouse abundance 

from point-count survey protocols, analyzed using N-mixture models, we developed and 

modeled simulated datasets based on empirical estimates of abundance and detection 

probabilities from our 2019 spring survey effort. Initial simulation sets (McNew et al. 2019) 

examined estimates for abundance and detection based upon the 2019 survey protocol: 3 

replicated visits at 100 independent survey sites located off trail. We simulated data using a “best 

case” scenario using an estimate of detection probability, 0.28 ± 0.10 SE, produced from the N-

mixture model for spring point-counts conducted with the use of electronic playback, and our 

high estimate 0.48 ± 0.20 for abundance. After examining the results of simulations using the 

2019 survey protocol, we then evaluated whether estimator precision could be increased by 1) 

increasing the number of replicate survey visits per point, and 2) increasing numbers of 

independent survey points. The results of these initial simulations indicated that a minimum of 

500 independent survey sites with 3 replicate visits would be needed to achieve unbiased and 

relatively precise (<15% CV) estimates of regional population abundance (McNew et al. 2019). 

After reviewing the results of our initial simulations, we continued to explore alternative 

protocols.  

We evaluated simulated model sets based on varying number of visits and varying number of 

independent points. For our first set of simulations, we evaluated simulated datasets based on 

100 independent survey points per region with increasing numbers of replicate visits under the 

“best case” scenario for estimates of detection and abundance. Next, we varied the number of 

visits between 3–9, and the number of survey points from 100–360. For these simulations, 

abundance and detection were based on empirical estimates from the 2019 spring survey effort 

achieved using the estimates from the electronic playback survey methodology; an estimate of 

detection probability of 0.28 ± 0.10 SE, and an estimate of abundance of 0.36 ±  0.13 (McNew et 

al. 2019). We conducted simulations in the Bayesian framework where the variation in local 



abundance was described with a Poisson distribution, and the variation in detection was 

described by a binomial random process:  

𝑁𝑖̂~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

𝑦𝑖,𝑗|𝑁𝑖̂~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖̂, 𝑝) 

Our simulation approach was like that described in the 2018 and 2019 Annual Reports (McNew 

et al. 2018, McNew et al. 2019). Simulations and analyses were conducted in R using the 

function jags from the ‘jagsUI’ package (Kellner 2019, R Core Team 2017). We used vague 

priors that provided little information about the estimated parameters. We used a standard vague 

prior (0.005, 0.005) for lambda, and a uniform distribution with a minimum of 0 and a maximum 

of 10 for p (Kery and Schaub 2012).   

In the simulations we estimated the total number of individuals across all sites by summing the 

estimated number of individuals at each survey site.  We ran three chains of length 40,000 after a 

burn-in period of 10,000 and thinned the posterior chains by 100 to ensure independence. We 

assessed convergence using the Gelman-Rubin (R̂) statistic, which examines the variance ratio of 

the Markov chain Monte Carlo (MCMC) algorithm within and between chains across iterations 

(Gelman and Rubin 1992). We accepted parameter estimates when they came from Markov 

chains with R̂ between 1.0 and 1.01.  

To quantify bias of estimates for each survey protocol scenario, we ran 400 iterations of each 

data simulation and subsequent analysis from these iterations, we calculated the difference 

between the estimated local abundance (N̂i) and the true abundance known for the simulated site 

(Ni).  Similarly, we quantified bias in the total estimated population size by calculating the 

difference between Total N̂ estimated as ∑ N̂i and the true known total abundance for all sites 

(∑ Ni).  We compared the posterior distributions of the mean differences between each estimate 

and the true values across all 400 simulations to evaluate the bias of each estimate.  We 

considered an estimate to be clearly biased in the 95% credible interval (CrI) of the differences 

did not include 0.  In addition, at each of the 400 iterations, we estimated the precision of each 

estimate by calculating the coefficient of variation (CV =  
estimated standard error

mean parameter estimate
).  We evaluated 

the posterior distributions of the 400 derived CV estimates to determine whether survey 

protocols yielded acceptable levels of precision for average local abundance and total population 

size.  We estimated probability that the average coefficient of variation would meet the manager-

determined threshold of 15% by calculating the proportion of the total posterior distribution 

density greater than 0.15. 

Spring Surveys. — During the first quarter of 2020, we evaluated different potential survey 

protocols using simulated datasets and N-mixture models in order to determine the survey effort 

required to achieve useful annual estimates of dusky grouse abundance using point-count survey 

protocol and electronic playback. Through simulations described above, we determined that 360 

independent points with 4 replicate surveys should, on average, provide annual estimates of 

dusky grouse abundance with the desired level of estimator precision of <15%.  

We randomly generated potential survey transects using ArcGIS and a model of relative habitat 

suitability (McNew et al. 2018; Figure 1). Survey transects consisted of 6 points along a road or 

trail, spaced 400 m apart to ensure independence (though the traveled distance along the 

trail/road may be greater than 400 m). The first point for transects along trails was randomly 



placed between 100-200m from the trailhead. The first point for transects along roads was 100m 

from the parking location. Field biologists selected among a randomly-generated set of potential 

transects and conducted surveys during 10 April – 30 May.  

Surveys consisted of a total of four four-minute independent point counts at each point location 

along the transect. Two of the four independent point counts occurred as the observer traveled 

from the start to end of the transect, then a 10 minute break occurred, and two additional point 

counts occurred as observers traveled from the end to the beginning of the transect. Each pair of 

point counts was conducted one right after the other; with ≤ 1 minute between them. This yielded 

a total of 4 point-counts per point in one morning. In this way, a transect only needed to be 

visited once, while still achieving 4 replicate surveys at each point. To increase detections of 

male dusky grouse, each four-minute point count occurred with female calls played 

electronically through a portable music player or cell phone and speaker (SanDisk 8 GB Clip 

Jam Mp3 Player, JBL Charge 3 speaker; Stirling and Bendell 1966). The female calls consisted 

of a four-minute recording that consisted of a female cackle and cantus. Playback recordings 

consisted of alternating playback of 30 seconds of calling and 30 seconds of silence until the 

entire four minutes of survey had elapsed. Each 4-minute survey was treated as an independent 

sample and all grouse observed were recorded during each period. The distance to each observed 

grouse was measured with a laser rangefinder and recorded. All dusky, ruffed, and spruce grouse 

observed (visually or auditorily) during transit to and between survey points were also recorded 

and perpendicular distances to the transect recorded. 

Analyses – We used single season N-mixture models to estimate local abundance and probability 

of detection for the spring 2020 survey data (Royle et al. 2004). We used the pcount function in 

the R ‘unmarked’ package to evaluate N-mixture models in a frequentist framework (Fiske and 

Chandler 2011, R Core Team 2017). We first checked the data for evidence of overdispersion by 

comparing null models with poisson distribution, zero-inflated poisson distribution, and negative 

binomial distribution for abundance. We evaluated the three different null models using Akaike’s 

Information Criterion (AIC; Burnham and Anderson 2002). If the models with the zero-inflated 

poisson distribution or negative binomial distribution had the lowest AIC value, then the data 

was considered overdispersed.  

After testing for overdispersion, we used the distribution from the most supported null model to 

evaluate effects of region (FWP Region1-5), habitat suitability (medium high or high), and 

transect type (transect that occurred along a road or a trail) on local abundance. We evaluated 

support for the different models using AIC (Burnham and Anderson 2002). After determining the 

most parsimonious model, we used a parametric bootstrap goodness of fit test from the R 

‘AICcmodavg’ package to evaluate how well the top model fit the data (Mazerolle 2017, R Core 

Team 2017). If the top model fitted the data well, we estimated lambda using the predict function 

and p using the backTransform function from the R ‘unmarked’ package (Fiske and Chandler 

2011, R Core Team 2017). 

Preliminary Results  

Simulations 

We used empirical estimates for detection and abundance from the spring 2019 survey data to 

evaluate the efficacy of a variety of survey protocols. For the first set of simulations, we used an 

estimate of detection, 0.28 ± 0.10SE, produced from the N-mixture model for point counts 

conducted with electronic playback, and our high estimate of abundance 0.48 ± 0.20. Results 



from the first set of simulations indicate that if only 100 independent sites are surveyed, a 

minimum of 8 replicate visits would be needed to yield unbiased and relatively precise (< 15%) 

indices of regional population abundance if site specific abundance is closer to our high estimate 

of 0.48 birds per survey point (Table 1).  

For our second set of simulations we used an estimate of detection, 0.28 ± 0.10, and an estimate 

of abundance, 0.36 ± 0.13, produced from the N-mixture model for point counts conducted with 

electronic playback (McNew et al. 2019). We varied the number of independent sites from 100 

to 360, and the number of replicate visits from 3 to 9. The models for many of these potential 

protocols produced convergence errors for site-level abundance estimates. Protocols that yielded 

unbiased and relatively precise (<15% CV) indices of regional population abundance while 

having relatively few convergence errors were 200 independent sites with 6 replicate visits, 300 

independent sites with 4 replicate visits, and 360 independent sites with 4 replicate visits (Table 

1).  

To examine the feasibility of each of these potential protocols that yielded relatively precise 

results, we calculated how many survey mornings would be needed if we had 5 or 6 points per 

transect, and 3 or 4 replicates occurring in one morning. We calculated that if we conducted 

surveys at 200 independent sites with 6 replicate visits, we would need 68–80 mornings to reach 

our survey goals. If we conducted surveys at 300 independent sites with 4 replicate visits, we 

would need 50–60 mornings, and if we conducted surveys at 360 independent sites with 4 

replicate visits, we would need 60–72 mornings. From this, we recommended a survey protocol 

of 360 independent sites with 6 survey points per transect and 4 replicate visits for the Spring 

2020 season for each FWP region with dusky grouse habitat. We also recommend continuing 

this survey protocol for the spring 2021 season to ensure sufficient data for future simulations for 

evaluating potential protocols that may be more feasible for annual monitoring.     

Spring Surveys.— During the spring survey period a total of 291 transects were surveyed, of 

which 2 were only partially surveyed due to equipment failure. 59 transects were surveyed in 

Region 1, 64 in Region 2, 65 in Region 3, 64 in Region 4, and 39 in Region 5. Surveys were 

conducted by a mix of MSU project personnel, FWP staff, and volunteers. Overall, 53 people 

assisted in completing the surveys, with several people completing surveys in multiple regions. 

In Region 1, 10 people conducted surveys, 19 people conducted surveys in Region 2, 15 people 

conducted surveys in Region 3, 12 people conducted surveys in Region 4, and 15 people 

conducted surveys in Region 5. Surveys occurred during10 April – 29 May, with the majority 

(90%) of surveys in occurring May.      

All survey transects were located in areas predicted to be suitable for dusky grouse by our habitat 

model. In Region 1, we detected dusky grouse at 37 (10.4%) of 354 survey points (Table 2). In 

Region 2, dusky grouse were detected at 79 (20.6%) of 384 points (Table 2). In Region 3, we 

detected dusky grouse at 37 (9.5%) of 391 survey. In Region 4, dusky grouse were detected at 25 

(6.5%) of 384 points. 384 points were surveyed and 6.5% were occupied by dusky grouse (Table 

2). In Region 5, only 231 points were surveyed, and dusky grouse were detected at 41 (17.7%) of 

the survey sites (Table 2). The maximum number of dusky grouse detected during a single point-

count was 4, and the minimum was 0 (Table 3). The average number of dusky grouse observed 

at each point was 0.12 ± 0.39SD in Region 1, 0.027 ± 0.59SD in Region 2, 0.12 ± 0.40SD in 

Region 3, 0.07 ± 0.26SD in Region 4, and 0.25 ± 0.66SD in Region 5 (Table 4).  



Estimated abundance. –We found evidence that observation data from the point-count surveys 

were overdispersed (Table 5) and used a negative binomial distribution for all subsequent N-

mixture models based on the point counts. We found the top model from our model set with 

covariates for abundance was a constant probability of detection and abundance varying among 

FWP region (Table 6). Using a goodness of fitness test with 500 simulations, the p-value for the 

top model was 0.35 and c-hat was 1.02 indicating a good model fit (Figure 1). Under the top 

model, abundance varies among FWP regions, the probability of detecting a dusky grouse was p 

= 0.20 ± 0.03SE (Table 7). Local abundance varied among regions with the lowest abundance in 

Region 4 (0.12 ± 0.03SE) and the highest abundance per point count in Region 5 (0.56 ± 0.13SE; 

Table 7, Figure 2).  

Goals for Next Quarter 

We will evaluate N-mixture models for the transects and evaluate distance sampling for the point 

count data and the transect data. After preliminary analysis, we will create a plan for further 

evaluating the effects of covariates on probability of detection and abundance. Future work in 

2021 will evaluate the utility of open population N-mixture models for estimating regional 

changes in population sizes annually. We will also plan and coordinate survey efforts for 2021.  

Objective 3: Develop methods that facilitate rigorous and cost-effective evaluations of 

grouse-habitat relationships and the effects of management (e.g. timber harvest) 

Accomplishments 

For effort/accomplishments, reference objective 2. 

Goals for Next Quarter 

For goals for next quarter, reference objective 2. 

  



Figure 1. Results of a goodness of fit test for the model where probability of detection (p) was 

held constant and abundance varied among FWP regions for the 2020 dusky grouse surveys.  

 

 

 

 

 

 

 

 

 



Figure 1.  Predicted local abundance estimates with standard error per point count site (0.31 km2) 

for dusky grouse in FWP regions 1-5. The estimates are from our top model, a single-season N-

mixture model where probability of detection was held constant and local abundance varied 

among regions. 

 

 

 

 

 

 

 



Table 1. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2019 spring pilot study. Mean 

(95% credible interval) for bias and coefficient of variation from 400 simulation runs for each suite of parameters. Simulations 1-3 

evaluated survey protocols with the high estimate for abundance from spring 2019 data. Simulations 4-11 evaluated survey protocols 

with an estimate of abundance from spring 2019 surveys using electronic playback. R = number of survey sites, J = number of 

replicate visits, λ = mean abundance per site, p = mean detection probability; CV = coefficient of variation for total population size 

(Total N) and N.site = estimated number of dusky grouse per survey site. Convergence errors = model convergence errors for 

estimated number of dusky grouse per survey site. The number of convergence errors was not initially recorded and thus is not 

available for all simulations; the current classification of yes – many or few is based on personal observation.  

 

* Table is printed here as an image in order to fit the page; a spreadsheet of this table is available in the provided supplemental 

materials. 

  

R J λ p

Sim 1 100 6 0.48 0.28 0.02 (-0.12, 0.17) -0.00 (-0.07, 0.07) 1.96 (-7.05, 13.97) 0.02 (-0.07, 0.14) 0.13 (0.09, 0.18) 0.20 no yes - many

Sim 2 100 8 0.48 0.28 0.01 (-0.11, 0.16) 0.00 (-0.05, 0.06) 0.79 (-5.80, 7.80) 0.01 (-0.06, 0.08) 0.09 (0.06, 0.11) 0.00 yes yes - many

Sim 3 100 9 0.48 0.28 0.01 (-0.11, 0.14) -0.00 (-0.05, 0.04) 0.90 (-4.75, 6.78) 0.01 (-0.05, 0.07) 0.08 (0.06, 0.10) 0.00 yes yes - many

Sim 4 100 8 0.36 0.28 0.01 (-0.10, 0.11) -0.00 (0.05, 0.05) 0.85 (-3.96, 6.47) 0.01 (-0.04, 0.06) 0.09 (0.07, 0.13) 0.02 yes yes - many

Sim 5 100 9 0.36 0.28 0.01 (-0.10, 0.13) -0.00 (-0.06, 0.05) 0.8 (-3.70, 5.70) 0.01 (-0.04, 0.06) 0.08 (0.06, 0.11) 0 yes yes - many

Sim 6 150 6 0.36 0.28 0.02 (-0.09, 0.12) -0.00 (-0.06, 0.06) 2.01 (-7.18, 12.75) 0.01 (-0.05, 0.09) 0.11 (0.08, 0.14) 0.04 yes yes - many

Sim 7 150 8 0.36 0.28 0.01 (-0.08, 0.10) -0.00 (-0.05, 0.05) 0.76 (-4.14, 7.47) 0.01 (-0.03, 0.05) 0.07 (0.05, 0.09) 0 yes yes - many

Sim 8 180 6 0.36 0.28 0.01 (-0.09, 0.10) 0.00 (-0.05, 0.06) 0.86 (-8.28, 11.59) 0.00 (-0.05, 0.06) 0.09 (0.07, 0.12) 0.01 yes yes - many

Sim 9 300 4 0.36 0.28 0.00 (-0.08, 0.10) 0.00 (-0.06, 0.07) 1.92 (-17.13, 24.09) 0.01 (-0.06, 0.08) 0.12 (0.09, 0.16) 0.08 yes-ish few

Sim 10 360 4 0.36 0.28 0.01 (-0.06, 0.09) 0.00 (-0.05, 0.06) 2.84 (-17.50, 26.25) 0.01 (-0.05, 0.08) 0.11 (0.08, 0.14) 0.02 yes few

Sim 11 200 6 0.36 0.28 0.01 (-0.07, 0.11) -0.00 (-0.06, 0.05) 1.78 (-7.85, 12.14) 0.01 (-0.04, 0.06) 0.09 (0.07, 0.12) 0.01 yes few

Probability 

CV

 N.total > 

0.15

Convergence 

Errors

Protocol meets

 Management

 Requirements

Simulation Parameters

Bias in λ Bias in p Bias in Total N Bias in N.site CV Total N



 

Table 2. Summary of spring 2020 survey site data for each FWP regions 1-5. The observed total 

population is the total number of dusky grouse observed or detected during the surveys. The 

maximum number of observed dusky grouse from the 4 repetitions from each survey site was 

used to calculate total observed population. The number of sites and percent of sites where dusky 

grouse were observed is presented, but dusky grouse could have been present at other survey 

sites and not been detected. 

Region # of Survey 

Points 

Observed total 

population 

# of sites where 

observed 

% of sites 

where observed 

Region 1 354 44 37 10.5 

Region 2 384 102 79 20.6 

Region 3 391 47 37 9.5 

Region 4 384 26 25 6.5 

Region 5 231 57 41 17.4 

 

Table 3. The maximum number of dusky grouse observed at each survey site over the four 

repetitions for FWP regions 1-5.  

Region The maximum number of dusky grouse observed at each survey site 

0 1 2 3 4 

Region 1 317 31 5 1 0 

Region 2 305 62 11 6 0 

Region 3 354 27 10 0 0 

Region 4 359 24 1 0 0 

Region 5 190 34 2 1 4 

 

Table 4. Average number of dusky grouse detected per point count survey during the 2020 spring 

survey period for each FWP region survey (Regions 1-5).  

Region Average Standard Deviation 

Region 1 0.12 0.39 

Region 2 0.27 0.59 

Region 3 0.12 0.40 

Region 4 0.07 0.26 

Region 5 0.25 0.66 

 

 

 

 



Table 5: Support for candidate models predicting abundance and probability of detection using 

N-mixture models. Three different abundance distributions were examined: negative binomial 

distribution, zero-inflated poisson distribution, and poisson distribution. A null models indicates 

a model fitted with constant probability of detection and constant abundance.  

Model K AICc Δ AICc wi 

Null model, Negative Binomial 3 2834.91 0.00 1.00 

Null model, Zero Inflated Poisson 3 2863.13 28.22 0.00 

Null model, Poisson 2 2973.15 138.24 0.00 

 

Table 6: Support for candidate models predicting abundance and probability of detection using 

N-mixture models and covariates for abundance. Region refers to FWP region. Surveys occurred 

in Regions 1-5. Type refers to the whether the transect was on a road or a trail. Habitat suitability 

refers to the habitat suitability model (see Annual Report 2018) and is either medium-high or 

high probability of use by dusky grouse.  

Model K AICc Δ AICc wi 

Detection constant ~ Abundance vary by Region 7 2793.69 0.00 1.00 

Detection constant ~ Abundance vary by Type 4 2816.52 22.83 0.00 

Detection constant ~ Abundance vary by Habitat Suitability 3 2834.91 41.23 0.00 

Detection constant ~ Abundance constant 4 2836.86 43.17 0.00 

 

Table 7. Parameter estimates for local abundance (lambda) and probability of detection (p) for 

spring 2020 dusky grouse survey data. Parameter estimates are from the top model in the model 

set, which was where detection was held constant and abundance varied by region. 

Region 
Local 

Abundance 
SE 95% CI p SE 95% CI 

1 0.24 0.05 0.15, 0.37 0.21 0.03 0.20, 0.40 

2 0.54 0.11 0.37, 0.79 0.21 0.03 0.20, 0.40 

3 0.22 0.05 0.15, 0.34 0.21 0.03 0.20, 0.40 

4 0.12 0.03 0.07, 0.20 0.21 0.03 0.20, 0.40 

5 0.56 0.13 0.36, 0.88 0.21 0.03 0.20, 0.40 
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